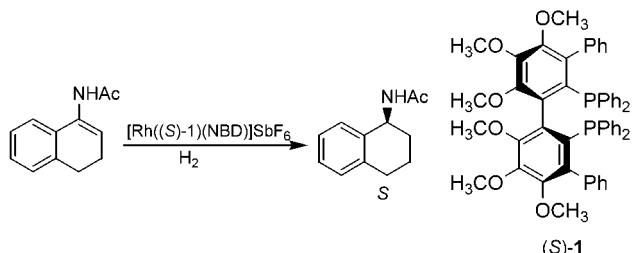


An *ortho*-Substituted BIPHEP Ligand and Its Applications in Rh-Catalyzed Hydrogenation of Cyclic Enamides


Wenjun Tang, Yongxiang Chi, and Xumu Zhang*

Department of Chemistry, The Pennsylvania State University,
University Park, Pennsylvania 16802

xumu@chem.psu.edu

Received March 8, 2002

ABSTRACT

An *ortho*-substituted BIPHEP ligand, *o*-Ph-hexaMeO-BIPHEP (**1**), is designed and synthesized. Compared with chiral biaryl phosphines without *ortho* substituents such as BINAP and MeO-BIPHEP, *o*-Ph-hexaMeO-BIPHEP shows higher enantioselectivities in Rh-catalyzed hydrogenation of cyclic enamides.

Ligand design has played a central role in developing highly efficient metal-catalyzed asymmetric reactions. Although many effective bisphosphine ligands have been reported, the development of new efficient phosphines remains of great importance. Chiral biaryl bisphosphines such as BINAP,¹ BIPHEMP,² and MeO-BIPHEP² (Figure 1) are very effective ligands for many metal-catalyzed asymmetric reactions. Structural variation of these ligands can lead to new chiral catalysts with special properties. Some ligands such as Bitianp,³ TetraMe-Bitiop,³ P-Phos,⁴ and Segphos⁵ have been

reported through modification of related biaryl phosphines. Recently, we also developed biaryl TunaPhos ligands, a series of BIPHEP ligands with systematic variations of bite angles, and demonstrated that they are superior for some asymmetric reactions.⁶ In this paper, we like to report a new chiral BIPHEP ligand with *ortho* substituents, (3,3'-diphenyl-4,4',5,5',6,6'-hexamethoxybiphenyl-2,2'-diyl)bis(diphenylphosphine) (abbreviated *o*-Ph-hexaMeO-BIPHEP, **1**) and its applications in Rh-catalyzed hydrogenation of cyclic enamides. To the best of our knowledge, chiral BIPHEP ligands with substituents at 3,3'-positions have not been systematically examined. We envision that the introduction of phenyl groups at 3,3'-positions in **1** can have a strong influence on the conformation of P-aryl rings and high enantioselectivity in asymmetric hydrogenation is possible.

The quadrant diagram has been used to describe the effectiveness of Rh-chiral phosphine catalysts (Figure 2).^{1c,7} Generally, the two equatorial P-aryl rings exert the greater

(1) (a) Noyori, R.; Takaya, H. *Acc. Chem. Res.* **1990**, 23, 345. (b) Ohkuma, T.; Kitamura, M.; Noyori, R. In *Catalytic Asymmetric Synthesis*; Ojima, I., Ed.; VCH: New York, 2000. (c) Noyori, R. *Asymmetric Catalysis in Organic Synthesis*; Wiley: New York, 1994.

(2) (a) Schmid, R.; Cereghetti, M.; Heiser, B.; Schonholzer, P.; Hansen, H.-J. *Helv. Chim. Acta* **1988**, 71, 897. (b) Schmid, R.; Foricher, J.; Cereghetti, M.; Schonhoizer, P. *Helv. Chim. Acta* **1991**, 74, 370. (c) Schmid, R.; Broger, E. A.; Cereghetti, M.; Crameri, Y.; Foricher, J.; Lalonde, M.; Muller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. *Pure Appl. Chem.* **1996**, 68, 131.

(3) (a) Benincori, T.; Brenna, E.; Sannicola, F.; Trimarco, L.; Antognazza, P.; Cesariotti, E.; Demartin, F.; Pilati, T. *J. Org. Chem.* **1996**, 61, 6244. (b) Benincori, T.; Cesariotti, E.; Piccolo, O.; Sannicola, F. *J. Org. Chem.* **2000**, 65, 2043.

(4) Pai, C.-C.; Lin, C.-W.; Lin, C.-C.; Chen, C.-C.; Chan, A. S. C.; Wong, W. T. *J. Am. Chem. Soc.* **2000**, 122, 11513.

(5) Saito, T.; Yokoawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H. *Adv. Synth. Catal.* **2001**, 343, 264.

(6) Zhang, Z.; Qian, H.; Longmire, J.; Zhang, X. *J. Org. Chem.* **2000**, 65, 6223.

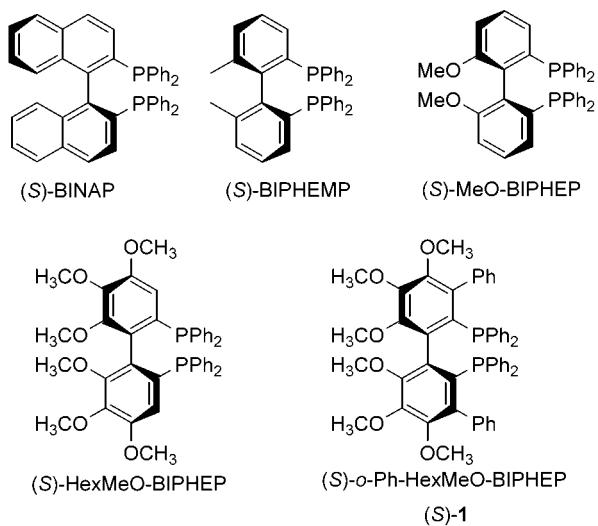


Figure 1. Chiral atropisomeric bisphosphines.

steric influence on two diagonal quadrants while the two axial P-aryl rings stay relatively open in the other two quadrants. Hence, the orientation and rotation of the two equatorial

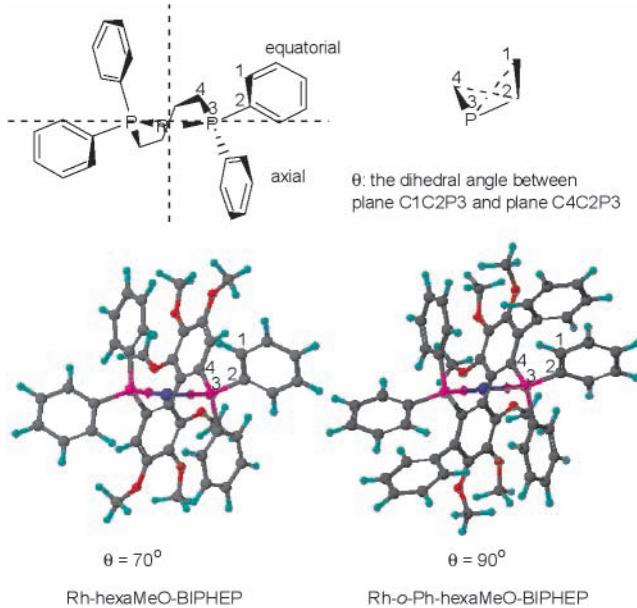
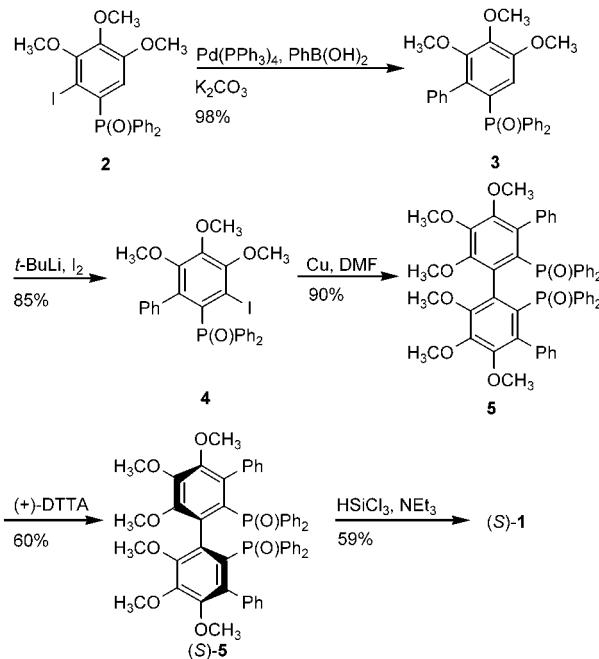


Figure 2. MM2 Calculations based on the CAChe program.


P-aryl rings will be crucial for chiral differentiation. We believe that the rotation of two equatorial P-phenyl rings in the Rh-o-Ph-hexMeO-BIPHEP complex could be restricted through the introduction of the two phenyl rings at 3,3'-positions. Molecular simulation (based on the CAChe MM2

(7) Brown, J. M. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999.

calculations) shows that the two equatorial P-phenyl rings of Rh-o-Ph-hexMeO-BIPHEP are almost parallel to the phenyl rings at 3,3'-positions. The two equatorial P-phenyl rings protrude out of the two diagonal quadrants to an extent greater than that of the Rh-hexMeO-BIPHEP complex, in which hydrogen atoms are at 3,3'-positions (θ = dihedral angle between plane C1C2P3 and plane C4C2P3; θ = 90° for the Rh-o-Ph-hexMeO-BIPHEP complex; θ = 70° for the Rh-hexMeO-BIPHEP complex). Consequently, a better chiral differentiation can be achieved.

Synthesis of ligand **1** is illustrated in Scheme 1. With the

Scheme 1. Synthesis of the (S)-o-Ph-hexMeO-BIPHEP Ligand

known iodide compound **2** as the starting material,^{2b} (2-phenyl-3,4,5-trimethoxyphenyl)diphenylphosphine oxide **3** was synthesized via a Suzuki coupling in 98% yield. Deprotonation of **3** with *t*-BuLi followed by quenching with I₂ produced an iodination product **4** in 85% yield. Copper-mediated Ullmann coupling of **4** led to the formation of the bisphosphine oxide **5** in 90% yield. Resolution of racemic **5** was effectively carried out by using (+)-(2*R*,3*R*)-2,3-O-ditoluoyltartaric acid ((+)-DTTA) as the resolving agent. The configuration of the optically pure (+)-**5** was assigned as *S* by comparing the hydrogenation results of ligand **1** with those of MeO-BIPHEP and hexaMeO-BIPHEP. Reduction of the bisphosphine oxide (S)-**5** with trichlorosilane provided (S)-**1**.

Ligand (S)-**1** was used for hydrogenation of cyclic enamides. Asymmetric hydrogenation of cyclic enamides is potentially important for the synthesis of biologically active chiral aminotetralines and aminoindanes.⁸ For example, sertraline is a chiral aminotetraline compound and a major

antidepressant drug.⁹ However, synthesis of this drug via asymmetric hydrogenation has not been realized. To the best of our knowledge, only a few catalytic systems have been efficient in the metal-catalyzed asymmetric hydrogenation of cyclic enamides (e.g., the Rh-PennPhos¹⁰ and Rh-BPE¹¹ systems). In our study, *N*-(3,4-dehydro-1-naphthyl)acetamide was chosen as the substrate for optimizing the reaction conditions (Table 1). The catalyst was prepared *in situ* by

Table 1. Optimization of the Reaction Conditions for Rh-catalyzed Hydrogenation of a Cyclic Enamide

entry ^a	Rh precursor	ligand	H ₂ press.	solvent	T (°C)	ee ^b (%)
1	Rh(COD) ₂ SbF ₆	(<i>S</i>)-1	30 atm	CH ₃ OH	rt	92
2	Rh(NBD) ₂ BF ₄	(<i>S</i>)-1	30 atm	CH ₃ OH	rt	81
3	Rh(COD) ₂ PF ₆	(<i>S</i>)-1	30 atm	CH ₃ OH	rt	90
4	[Rh(COD)Cl] ₂	(<i>S</i>)-1	30 atm	CH ₃ OH	rt	50
5	Rh(NBD) ₂ SbF ₆	(<i>S</i>)-1	30 atm	CH ₃ OH	rt	93
6	Rh(NBD) ₂ SbF ₆	(<i>S</i>)-1	25 psi	CH ₃ OH	rt	94
7	Rh(NBD) ₂ SbF ₆	(<i>S</i>)-1	25 psi	THF	rt	95
8	Rh(NBD) ₂ SbF ₆	(<i>S</i>)-1	25 psi	toluene	rt	90
9	Rh(NBD) ₂ SbF ₆	(<i>S</i>)-1	25 psi	CH ₂ Cl ₂	rt	95
10	Rh(NBD) ₂ SbF ₆	(<i>S</i>)-1	25 psi	EtOAc	rt	93
11	Rh(NBD) ₂ SbF ₆	(<i>S</i>)-1	25 psi	CH ₂ Cl ₂	0	97
12	Rh(NBD) ₂ SbF ₆	(<i>S</i>)-1	25 psi	CH ₂ Cl ₂	-20	98
13	Rh(NBD) ₂ SbF ₆	(<i>S</i>)-hexaMeO-BIPHEP	25 psi	CH ₂ Cl ₂	-20	65
14	Rh(NBD) ₂ SbF ₆	(<i>S</i>)-MeO-BIPHEP	25 psi	CH ₂ Cl ₂	-20	67
15	Rh(NBD) ₂ SbF ₆	(<i>R</i>)-BINAP	25 psi	CH ₂ Cl ₂	-20	55 ^c
16	Rh(NBD) ₂ SbF ₆	(+)-DIOP	25 psi	CH ₂ Cl ₂	-20	13 ^c
17 ^d	Rh(NBD) ₂ SbF ₆	(<i>R,R</i>)-Me-DuPhos	25 psi	CH ₂ Cl ₂	-20	N/A

^a The reaction was complete in quantitative yield. The catalyst was made *in situ* by stirring a solution of Rh precursor and phosphine ligand in the solvent for 30 min [substrate/Rh/L* = 100/1/1.1]. The configuration of the product is *S*. ^b Enantiomeric excesses were determined by chiral GC using Supelco chiral Select 1000 (0.25 mm × 30 m) column. ^c The configuration of the major product is *R*. ^d No reaction.

mixing a solution of a Rh precursor and a phosphine ligand. Under the initial hydrogenation pressure of 30 atm at room temperature and with a ratio of substrate/Rh/(*S*)-1 of 100:1:1.1, different Rh precursors led to different results in enantioselectivities (entries 1–5). Cationic Rh precursors gave better enantioselectivities than did a neutral Rh pre-

(8) Tschaen, D. M.; Abramson, L.; Cai, D.; Desmond, R.; Dolling, U.-H.; Frey, L.; Karady, S.; Shi, Y.-J.; Verhoeven, T. R. *J. Org. Chem.* **1995**, *60*, 4324.

(9) For a racemic route to sertraline, see: William, M.; Quallich, G. *Chem. Ind. (London)* **1990**, *10*, 315. For an asymmetric route, see: (a) Quallich, G. J.; Woodall, T. M. *Tetrahedron* **1992**, *48*, 10239. (b) Corey, E. J.; Grant, T. G. *Tetrahedron Lett.* **1994**, *35*, 5373. (c) Lautens, M.; Rovis, T. *J. Org. Chem.* **1997**, *62*, 5246. (d) Lautens, M.; Rovis, T. *Tetrahedron* **1999**, *55*, 8967. (d) Davies, H. M. L.; Stafford, D. G.; Hansen, T. *Org. Lett.* **1999**, *1*, 233. (e) Chen, C.-Y.; Reamer, R. A. *Org. Lett.* **1999**, *1*, 293. (f) Chandrasekhar, S.; Reddy, M. V. *Tetrahedron* **2000**, *56*, 1111. (g) Yun, J.; Buchwald, S. L. *J. Org. Chem.* **2000**, *65*, 767.

(10) Zhang, Z.; Zhu, G.; Jiang, Q.; Xiao, D.; Zhang, X. *J. Org. Chem.* **1999**, *64*, 1774.

(11) Burk, M. J.; Casey, G.; Johnson, N. B. *J. Org. Chem.* **1998**, *63*, 6084.

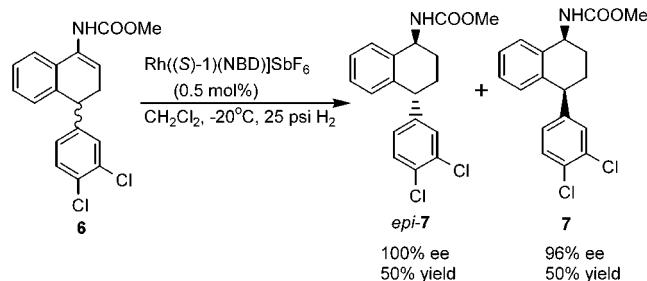
sor, and Rh(NBD)₂SbF₆ was selected as the desired precursor. A slight improvement of the enantioselectivity was observed when the reaction was carried out at a lower hydrogen pressure (entry 5 vs 6). A small solvent effect was also found in the reaction (entries 6–10). Both THF and CH₂Cl₂ proved to be good solvents for this hydrogenation process. When the hydrogenation was carried out at 0 °C, a further improved enantioselectivity was observed (entry 11). The best ee (98%) was achieved when the hydrogenation was carried out at -20 °C under 25 psi of hydrogen in CH₂Cl₂ (entry 12). This result was comparable with the best results obtained with the Rh-PennPhos system.¹⁰ To demonstrate the importance of the *o*-phenyl groups of (*S*)-1 on the enantioselectivity of the product, we investigated the reaction with some other chiral ligands under the same conditions (entries 13–17). Compared with the *o*-Ph-hexaMeO-BIPHEP ligand 1, significantly lower enantioselectivities (55–65%) were observed with other chiral biaryl phosphines without *ortho* substituents, such as hexaMeO-BIPHEP, MeO-BIPHEP, and BINAP. These results clearly indicated the strong influence of *o*-phenyl groups of (*S*)-1 on the enantioselectivity of the reaction. When DIOP was used as the ligand, a low ee was obtained. Under the same reaction condition, no reaction was observed with Me-DuPhos as the ligand.

Table 2. Hydrogenation of Enamides Catalyzed by Rh-*o*-Ph-HexaMeO-BIPHEP System

entry ^a	substrate	ee (%) ^b	entry	substrate	ee (%) ^b
1		98	6		45
2		98	7 ^c		37
3		96	8		66
4		99	9		70
5		96	10		99

^a The reaction was carried out at -20 °C under 25 psi of H₂ in CH₂Cl₂ with catalyst [Rh((*S*)-1)(NBD)]SbF₆/substrate = 1:200. The reaction was complete unless otherwise specified. The configuration of chiral amine products is *S*. ^b Enantiomeric excesses were determined by chiral GC using Supelco chiral Select 1000 (0.25 mm × 30 m) column. ^c Conversion 83%.

To test the catalytic efficiency of Rh-*o*-Ph-hexaMeO-BIPHEP system for hydrogenation of cyclic enamides, the catalyst precursor [Rh((*S*)-1)(NBD)]SbF₆ was prepared. With this catalyst precursor, up to 2,000 turnovers for hydroge-


tion of *N*-(3,4-dehydro-1-naphthyl)acetamide and 95% ee were obtained. Under the optimized conditions, a variety of enamides have been hydrogenated with the Rh-*o*-Ph-hexaMeO-BIPHEP system (Table 2). Excellent enantioselectivities (96–98%) were observed on hydrogenation of cyclic enamides derived from α -tetralones and α -indanones (entries 1–5). A tetrasubstituted five-membered cyclic enamide also gave a high ee with complete conversion (entry 4). An excellent ee was also achieved on the hydrogenation of an (*E*)- β -dehydroamino acid ester (entry 10). However, the ee obtained for the enamide derived from β -tetralone was low (45%, entry 6). The system also showed only moderate ee's on the hydrogenation of other cyclic and acyclic enamides (entries 7–9).

Because a cyclic carbamate substrate gave an excellent ee (entry 5), we tested a racemic carbamate **6** for hydrogenation under the same reaction conditions (Scheme 2). The carbamate **6** was converted smoothly into the *cis* product **7** in 50% yield with 96% ee and the *trans* product *epi*-**7** in 50% yield with 100% ee. According to the literature procedure,¹² LAH reduction of **7** can directly lead to the formation of enantiomerically enriched sertraline.

In conclusion, we have designed and synthesized the first BIPHEP ligand with substituents at 3,3'-positions, *o*-Ph-hexaMeO-BIPHEP. This ligand has been successfully applied in Rh-catalyzed hydrogenation of cyclic enamides and carbamates. High ee's and turnovers have been realized. The

(12) DeNinno, M. P.; Eller, C.; Etienne, J. B. *J. Org. Chem.* **2001**, *66*, 6988.

Scheme 2. Hydrogenation of a Racemic Cyclic Carbamate

importance of the *o*-phenyl groups of the ligand on the enantioselectivity of the reaction has also been demonstrated by comparing the hydrogenation results of the corresponding chiral ligands without *ortho* substituents. Further study will be focused on the synthesis and applications of other *ortho*-substituted BIPHEP or BINAP ligands and progress will be reported in due course.

Acknowledgment. This work was supported by the National Institute of Health.

Supporting Information Available: Experimental details, spectroscopic data, and analytical conditions of the ligand and hydrogenation products. This material is available free of charge via the Internet at <http://pubs.acs.org>.

OL0258435